### How to optimize campus chilled water system

# Diagnostics and treatment to make your cooling & heating system fit and sustainable.

**Presentation to** 



Healthcare Facilities Management Society of New Jersey And US Green Building Council of New Jersey

by

#### Hemant Mehta, PE



Smart solutions that work.

April 18 2013





- One Btu of *cooling costs 2.5 times* as much as a Btu of heating
- U.S. buildings consume 400% more energy than European buildings

### **Causes of System Inefficiency**

- Master Planning by young inexperience engineers
- Poor and/or Signature Design
- Lack of Peer Review
- Fear
- Lack of Training



### Let's discuss how to optimize

- Process for a project
  - Master Plan
  - Detail design
  - Construction and Commissioning
  - Operators training





Definition of Master Plan

 master plan n (1929): "a
 plan giving overall
 guidance"







# Utilities

- High voltage electrical
- Low voltage electrical
- Steam/hot water
- Chilled Water
- Condenser water
- Fuel oil
- Natural gas
- Storm water

- Sanitary water
- Fire water
- Domestic water
- Domestic hot water
- Nitrogen
- Communication & life safety
- Laboratory waste



### **Approach to Master Planning**

- On-site team
- Existing systems assessment
- Benchmarking
- Development of load projections
- Infrastructure alternatives
- Optimization modeling
- Life cycle cost analysis
- Near-term, short-term & long-term solutions
- Prioritization of projects



# Deviating from normal approach can harvest big savings with

- One of the major tasks of the master plan is the site survey
- Engineers collect data of the existing system for the remaining life of the equipment, utility load etc.



### What our experience brings us

- While performing site survey, if the engineering team includes well-experienced team members, they can identify many improvements for your immediate benefit during the survey with *Immediate payback*
- Let's review some of the case histories



# Chiller Review – Excessive Approach Identified



Smart solutions that work.

# Chiller Review – Excessive Approach Resolved

Sent: Wednesday, June 30, 2010 2:58 PM To: Barber, Ernest (ehb5d); Martin, Edward (esm3e) Cc: Hemant Mehta Subject: UVA Chiller Plant Performance

#### Ernie/Scott,

Per the attached Plant Graphic snap shot from 6-23-10, we calculated the kW/ton of the chiller to be over 30% greater than the rated energy use This may be due to:

low refrigerant charge

• fouled condenser water tubes

• excess oil in the evaporator

• low condenser water flow

Please have Trane take a look at the machine to determine the cause.....

| Andre Pearson, PE, LEED AP, CEM<br>Senior Associate | From: Martin, Edward (esm3e) [ <u>mailto:esm3e@eservices.virginia.edu]</u><br>Sent: Friday, October 22, 2010 11:23 AM<br>To: Andre Pearson; Barber, Ernest (ehb5d) |  |  |  |  |
|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| WM Group Engineers, P.C.                            | Cc: Hemant Mehta; Gomez, Cheryl (clg9y)                                                                                                                            |  |  |  |  |
| 370 Seventh Avenue, Suite 701<br>New York, NY 10001 | Subject: RE: UVA Chiller Plant Performance                                                                                                                         |  |  |  |  |
|                                                     | All,                                                                                                                                                               |  |  |  |  |
|                                                     | Additional work on this issue revealed:                                                                                                                            |  |  |  |  |
|                                                     | • Chiller #1 was 400lbs low on refrigerant charge and;                                                                                                             |  |  |  |  |
|                                                     | Chiller #2 was 100lbs low on refrigerant charge                                                                                                                    |  |  |  |  |
|                                                     | Bill Kirby informs me that the approach on both machines is now what we should expect.                                                                             |  |  |  |  |

# **US** Capitol

- While performing site survey we noticed that the last building on the distribution system Amtrak building was imposing additional pressure drop of 23 feet on the whole system of 46,000 gpm
- We could eliminate this pressure drop by simply opening a valve





### **US Capitol - Division of Responsibility**

• Chilled water pressure being utilized improperly at buildings...



# **US** Capitol

Building connections: Chilled water pressure being utilized improperly at buildings.

Chilled water flowing through non-operating pump.

Pressure drop:10psi Head Loss: 23 ft.

At peak load flow of 46,000 GPM, additional power required for Pumps at Chiller Plant is

46000\*23/(3960\*.8) = 335 HP or 250.2 kW



With equivalent 4000 full load hours, annual energy loss is 1,000,883 kWh At \$0.0912/kWh, annual loss is **\$91,281** 



# **US** Capitol





#### **Uneven Water Flow in Tower**

Supply flow was below the allowable range, and there was also clogging in tower fill

After observations, operators ran towers at higher flow and replaced the fill to fix problems



Smart solutions that work.

# Story of Six Different Consultants 2012

#### World Trade Center

- Central CHW Plant & River Water Systems Design
  - 12,500-ton central chiller plant and distribution system serving multiple buildings
  - River cooling water system and river water pump house restoration
- *Six different consultants* design interconnections to buildings in different ways...
- Memorial Building consultant installs secondary pumps one story below machine room!
  - We will get paid to correct this and remove the unnecessary pumps!





# **New Jersey University**





Return HTHW temp is 270 F. Flue gas after heat recovery should be less than 300 F, but because of mixing of return water and possible issues with heat exchanger, flue gas leaving temperature is 400 F, i.e. 100 degrees of heating is thrown away. Contributes to significant additional fuel costs.



Smart solutions that work.

# **New Jersey University**

Chillers are running on 30 degree day. Free cooling heat exchangers are not being used. Likely simultaneous heating and cooling in the spaces, as well as lost efficiency by running multiple chillers





# Review of the winter electrical demand indicates heavy winter cooling load





# New Jersey University

Cooling tower supply temperature setpoint is not reset from the design temperature, adding 20% to chiller energy use. Estimated energy cost of at least \$150,000



CDW Supply temp of 78 on a 30 deg WB day



# How does delta T and condensing temperature affect Power?

• Compressor Energy (Ce):

 $Ce = \dot{m}\Delta P$ 

• Refrigerant mass flow:  $\dot{m} = \frac{200}{RE}$ 



ENTHALPY (BTU/Lb.)

- RE: Refrigerant effect increases as  $\Delta T$  increases.
- Mass flow rate decreases with increase in ΔT
- Hence compressor power decreases with increase in  $\Delta T$ .
- Low ΔT reduces chiller capacity and more chillers need to be operated.



# Rutgers Newark HTHW System- Consequence of

master plan performed by an inexperienced engineer

- Rutgers sent RFP to expand the boiler plant for cost of \$5 million, based on master plan
- Master plan must have been prepared by a smart but young engineer with no supervision
- review of logs revealed operating temperatures were 360°F supply and 300°F return, while system design was 400°F supply and 250°F return temps.
- The poor delta T reduced the operating capacity by 60/150 = 40%
- Conclusion: No new boiler was required.
- Saved over 5 million dollars in investment.



# Amgen California Consequence of master plan performed by an inexperienced engineer

- Site had two chillers plants interconnected but operated independently
- Recommended new (third) chilled water plant
- A quick two hours review indicated that there was no need for the third plant
- Savings of over Ten million dollars



# **System Optimization**

Amgen, Inc. Thousand Oaks, CA

#### Chilled Water Hydraulic Study and Plant Interconnection

- Creation of computerized hydraulic model of existing chilled water plant and distribution system.
- Identification of bottlenecks in system flow, evaluation of existing capacity for present and future loads.
- Two plants interconnected: Single plant operation for most of the year, second plant used for peaking.

Annual Energy Cost Savings: \$ 500,000



"We espect to save millions of dollars in capital and O&M capital and pest 10



### Experience

### **AMGEN** - from Client

| Location    | HP  | Voltage | Kw    | Description  | Hours per Year | KwH per Year | Price per KwH | Power Factor | Anr | nual Savings |
|-------------|-----|---------|-------|--------------|----------------|--------------|---------------|--------------|-----|--------------|
|             | 100 | 480     | 74.6  | B29 P-01     | 8760           | 653,496      | 0.12          | 0.85         | \$  | 92,258       |
| B29         | 100 | 480     | 74.6  | B29 P-02     | 8760           | 653,496      | 0.12          | 0.85         | \$  | 92,258       |
|             | 100 | 480     | 74.6  | B29 P-03     | 8760           | 653,496      | 0.12          | 0.85         | \$  | 92,258       |
|             |     |         |       |              |                |              |               |              |     |              |
|             | 40  | 480     | 29.84 | B25 P-01     | 8760           | 261,398      | 0.12          | 0.85         | \$  | 36,903       |
| B25         | 40  | 480     | 29.84 | B25 P-02     | 8760           | 261,398      | 0.12          | 0.85         | \$  | 36,903       |
|             | 40  | 480     | 29.84 | B25 P-03     | 8760           | 130,699      | 0.12          | 0.85         | \$  | 18,452       |
|             |     |         |       |              |                |              |               |              |     |              |
|             | 150 | 480     | 111.9 | B30 P-5251   | 8760           | 980,244      | 0.12          | 0.835        | \$  | 140,873      |
| B30         | 150 | 480     | 111.9 | B30 P-5252   | 8760           | 980,244      | 0.12          | 0.835        | \$  | 140,873      |
|             | 150 | 480     | 111.9 | B30 P-5253   | 8760           | 490,122      | 0.12          | 0.835        | \$  | 70,437       |
|             |     |         |       |              |                |              |               |              |     |              |
| <b>D</b> 20 | 30  | 480     | 22.38 | B38-08-P1    | 8760           | 98,024       | 0.12          | 0.85         | \$  | 13,839       |
| D30         | 30  | 480     | 22.38 | B38-08-P2    | 8760           | 98,024       | 0.12          | 0.85         | \$  | 13,839       |
|             | -   |         |       |              |                |              |               |              |     |              |
| B27         | 20  | 480     | 14.92 | B27-01       | 8760           | 130,699      | 0.12          | 0.85         | \$  | 18,452       |
| DZ1         | 20  | 480     | 14.92 | B27-02       | 8760           | 130,699      | 0.12          | 0.85         | \$  | 18,452       |
|             |     |         |       |              |                |              |               |              |     |              |
| B1/         | 50  | 480     | 37.3  | B14-CW-P0001 | 8760           | 326,748      | 0.12          | 0.83         | \$  | 47,241       |
| DIT         | 50  | 480     | 37.3  | B14-CW-P0002 | 8760           | 326,748      | 0.12          | 0.83         | \$  | 47,241       |
|             |     |         |       |              |                |              |               |              |     |              |
| B15         | 60  | 480     | 44.76 | B15 -P001    | 8760           | 392,098      | 0.12          | 0.85         | \$  | 55,355       |
| DIS         | 60  | 480     | 44.76 | B15 -P002    | 8760           | 392,098      | 0.12          | 0.85         | \$  | 55,355       |
|             |     |         |       |              |                |              |               |              |     |              |
| B33         | 7.5 | 480     | 5.60  | B33 -P01     | 8760           | 49,012       | 0.12          | 0.83         | \$  | 7,086        |
| 000         | 7.5 | 480     | 5.60  | B33 -P02     | 8760           | 49,012       | 0.12          | 0.83         | \$  | 7,086        |
|             |     |         |       |              |                |              |               |              |     |              |
|             | 40  | 480     | 29.84 | B32-P001     | 8760           | 261,398      | 0.12          | 0.902        | \$  | 34,776       |
| B32         | 40  | 480     | 29.84 | B32-P002     | 8760           | 261,398      | 0.12          | 0.902        | \$  | 34,776       |
|             | 40  | 480     | 29.84 | B32-P003     | 8760           | 261,398      | 0.12          | 0.902        | \$  | 34,776       |
|             |     |         |       |              |                |              |               |              |     |              |



7,841,952

\$ 1,109,488

**WM**Group Engineers

Smart solutions that work.

### Question what you see

#### Identification of Bottlenecks

- Two close valves created the blocked area which increases the increased in pump head.
- Identification and elimination of bottlenecks reduced thousands of dollars in operating cost.



# New Jersey University

CHW Pump Size Disparity

EE Building Plant Chilled Water Pumps:

140 ft. and 1200 gpmAnd100 ft. and 1200 gpmThe disparate pressures lead to fighting pumps and incorrect supply flows.









# NY HospitaL





#### **Uneven Water Flow in Tower**

Weir dams in towers intended to distribute flow over fill. However dams were installed sideways, making flow *more* uneven. Contributed to \$25,000 of additional chiller energy use costs due to ineffective heat rejection at towers.

#### **RECOMMENDED DISTRIBUTION**





## **MIT site Survey**

#### High System Pressure (no dP reset)

 Excess water pressure gets eaten up by control valves, which throttle down the flow

Supplied vs Real Required Pressure



Smart solutions that work.

### **Bronx Hospital**

Chiller have balancing valves half closed, eating up pressure drop so that VFD's are 100% on to try to meet demand pressure. Estimated energy cost of \$26,000













#### Pennsylvania State Capitol Building Complex Harrisburg, PA

#### Chilled Water Systems Upgrade

- Optimization of the system pumping
- Improvement of chilled water system temperature differential
- Conversion of the existing chilled water system from a primary/secondary/tertiary pumping system to an all-primary, variable volume system.

Annual Projected Energy Savings: \$ 320,000 per year Estimated Implementation Cost: \$825,000 Simple Payback: 2.6 years

#### PENNSYLVANIA DEPARTMENT OF GENERAL SERVICES







### **Pressure Distribution Diagram**





### **Our Solution for Immediate Implementation**





### **New Pressure Distribution Diagram**



Smart solutions that work.

### **PA State Capitol – Process Control**





### Poor and/or Signature Design:

- Many Engineering firms have one design concept they feel comfortable with
- So regardless of what is best for the particular project they imposed the so called signature design.
- Many times I can just walk into the plant and name design consultant
- With no peer review requirements in our industry client pays penalty.



### Poor and/or Signature Design:

- Deviation from the normal Master Planning approach with experienced engineers on site survey team provides immediate benefit from improvements that could have been overlooked.
- Almost on all master plan projects we worked on we were able to save more than our engineering fees after the completion of site survey task.
- Discussing improvements with plant operators provides the training and empowers them as well.



# Consequence of Signature Design "Cut and Paste"

• Incompatible additions...



**Primary-Constant Speed** 



# Consequence of signature design "Cut and Paste"

- *Oversized pumps* causing valves to throttle at ~60%
- Flow above 4,000 GPM routed through decoupler



# **Benefit of Peer Review**

#### **Duke University Project**

- Plant #1 built in 2000
- Final bid docs for Plant #2 were being prepared for construction
- Our client from Yale asked that we review the Duke project
- Our peer review reduced cost by over \$2 million
- As money was already funded, used to redesign Plant #1...

Dark blue pipes replaced old primary pumps





# Benefit of Peer Review IBM – Burlington, Vermont









**B971**W

**<u>Chiller Plant</u>** 





- New Fabrication building
- Substantial growth of the heating and cooling load
- No room for expansion in the existing plants
- Proposed solution: Build a new \$42 million plant





- **1.** Remove Chillers from Plant B963.
- 2. Install additional HTHW Boilers for the increased load in Plant B963.
- 3. Relocate Chillers from Plant B963 and install new Chillers in new Central Chiller Plant to meet increased load.



### Out-of-the-Box Solution – Cont'd





# Virtual Central Plant Regains 3600 tons of Additional Capacity

#### NYU Medical Center (2007)

- Plant survey and hydraulic model indicated unnecessary pumps
- 1,300 horsepower of pumps are being removed, including 11 pumps in two brand new chiller plants
- \$300,000 implementation cost





# Teach operator to run a system not machines

#### New York Presbyterian Hospital

- Uptown and Downtown Facilities
- Chilled water system optimization
- ~650 kW peak demand savings
- Saved over \$500,000 per year
- Now peak cooling demand is met by 4 chillers rather than 6 chillers prior to modification





### **Remove Operators Fear by educating**

**Constant Chilled Water and Condenser Water Temperatures...** 

 VFD-equipped chillers can achieve *exceptional part-load efficiency <u>IF</u> they take advantage of <i>condenser water temperature relief/reset*



### **Remove Operators Fear by educating**

#### Constant Chilled Water and Condenser Water Temperatures...

#### **Before Tower Reset**

|       |                 |         | Cooling |
|-------|-----------------|---------|---------|
|       |                 | Chiller | Tower   |
|       | Total           | Energy  | Energy  |
| Month | ton-hr          | (kWh)   | (kWh)   |
| Jan   | 0               | 0       | 0       |
| Feb   | 0               | 0       | 0       |
| Mar   | 11,182          | 4,644   | 70      |
| Apr   | 35,668          | 14,742  | 273     |
| May   | 160,925         | 72,611  | 1,755   |
| Jun   | 403,521         | 181,786 | 6,719   |
| Jul   | 426,127         | 191,492 | 6,089   |
| Aug   | 412,393         | 186,241 | 7,407   |
| Sep   | 311,018         | 139,943 | 5,097   |
| Oct   | 53 <i>,</i> 085 | 22,043  | 476     |
| Nov   | 32,745          | 13,723  | 283     |
| Dec   | 0               | 0       | 0       |
| Total |                 | 827,226 | 28,168  |

#### After Tower Reset

|       |         |         | Cooling |
|-------|---------|---------|---------|
|       |         | Chiller | Tower   |
|       | Total   | Energy  | Energy  |
| Month | ton-hr  | (kWh)   | (kWh)   |
| Jan   | 0       | 0       | 0       |
| Feb   | 0       | 0       | 0       |
| Mar   | 11,182  | 3,190   | 268     |
| Apr   | 35,668  | 10,461  | 1,012   |
| May   | 160,925 | 54,750  | 5,658   |
| Jun   | 403,521 | 152,057 | 15,808  |
| Jul   | 426,127 | 156,383 | 16,034  |
| Aug   | 412,393 | 159,696 | 15,520  |
| Sep   | 311,018 | 117,641 | 11,769  |
| Oct   | 53,085  | 16,135  | 1,774   |
| Nov   | 32,745  | 10,040  | 910     |
| Dec   | 0       | 0       | 0       |
| Total |         | 680,351 | 68,753  |

### **Remove Managers Fear by educating**

#### <u>Pfizer</u>

- "...changes had always been viewed as too risky... During winter months, one 2,000-ton chiller was supporting only about 300 tons of a very critical manufacturing process load."
- A hydraulic analysis showed, however, that this plant could safely be shut down, with the load transferred to another plant. The site has operated in this manner for two years now, saving significant amounts of energy.
- "Had WM Group not instilled the confidence in our operators to overcome the fear of failure, the savings would never have been realized."
  - Bill Geiling, CEM, Manager of Plant Engineering and Maintenance, Chiller Plant Operations.



### **Results of Lack of Training**



### Lack of Training

#### Training Session Feedback..

II. What part you found most useful

I Found his whole stradegy for operation The west plant and expansion was the m use ful because it was laid out soft of like a guide on how to successfully oper OUT refrideration plant and it would be nice to have everyone on the same pa

I found his whole strategy for operating the west plant and expansion was the most useful because it was laid out sort of like a guide on how to successfully operate our refrigeration plant and it would be nice to have everyone on the same page.

Neverall comment MR, Hamant delivered quite a bit of technical infumention in a way that kept our attention throught the whole session. It was well preprived and illustrated with his drawings ON the whiteboard

The Information that he compiled and bo plants was very good Also Knowing that he had an active part in the planning The WRP plant, added to the Knowledge

Mr. Hemant delivered quite a bit of technical information in a way that kept our attention through the whole session. It was well prepared and illustrated with is drawings on the whiteboard.

The information that he compiled on both plants was very good. Also knowing that he had an active part in the planning of phase 1 plant added to the knowledge base.

### Optimum Design Concepts Virtual Variable Primary System. Educate client to make the bold move

| Smart solutions that work. | Pump Cemetery<br>Memorial Sloan-Kettering Cancer Center                                                                                                                                                                                                                                                                                      | 19,000 tons CHW production capacity interconnected |  |  |
|----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--|--|
|                            | a total of 9,000 to the archited water production<br>capacity was merconnected, providing additional<br>redundancy and flexibility for demand response;<br>a total 32 public more byperced and 22 pumps<br>were demotished (many shown here);<br>summer peak demand reduced by 600 kW on Main<br>Campus, 400 kW at Rockefeller Research Lab; | 32 pumps bypassed<br>23 pumps demolished           |  |  |
|                            | projected pumping horsepower reduced 1,600, and     \$1 milline: aprojected annual energy savings. MSKCC receiped \$662,000 from NYSERDA for peak shaving.                                                                                                                                                                                   | \$1 million in projected annual energy savings     |  |  |
|                            |                                                                                                                                                                                                                                                                                                                                              | \$662,000 NYSERDA funding                          |  |  |



WM Group Engineers, P.C. Seven Penn Plaza 370 Seventh Avenue, Suite 701 New York, NY 10001

Phone (646) 827-6400 Fax (646) 827-6401

www.wmgroupeng.com



# Summary: How To Keep Your System in Shape

- 1. Keep *operating logs*; have logs reviewed by an expert
- 2. Don't be afraid of change; use *state-of-the-art technology*
- *3. Educate managers to remove their fear*
- 4. Provide *system training* to operators
- 5. Interchange operating personal between plant and buildings, or *"cross training"*
- 6. Convert HVAC controls to *process controls*



# Summary: Believe in our education

- We are engineers with power to make our planet Green
- Please stop and think before you jump into design
- Yes, "cut and Paste" design will make little extra money in short term but it is a loss in long term



# Thank You

Hemant Mehta, PE President

**WM**Group Engineers, P.C. (646) 827-6400

> hmehta@wmgroupeng.com www.wmgroupeng.com

